Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans.
نویسندگان
چکیده
Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.
منابع مشابه
A peroxisome proliferator-activated receptor gamma-retinoid X receptor heterodimer physically interacts with the transcriptional activator PAX6 to inhibit glucagon gene transcription.
The peptide hormone glucagon stimulates hepatic glucose output, and its levels in the blood are elevated in type 2 diabetes mellitus. The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) has essential roles in glucose homeostasis, and thiazolidinedione PPARgamma agonists are clinically important antidiabetic drugs. As part of their antidiabetic effect, thiazolidined...
متن کاملPeroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect.
The synthetic thiazolidinedione ligands of peroxisome proliferator-activated receptor-gamma (PPARgamma) improve insulin sensitivity in type II diabetes and induce GLUT4 mRNA expression in fat and muscle. However, the molecular mechanisms involved are still unclear. We studied the regulatory effects of PPARgamma and its ligands on GLUT4 gene expression in primary rat adipocytes and CHO-K1 cells ...
متن کاملAttenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparγ) Heterodimer
The peroxisome proliferator-activated receptor gamma (PPARgamma) is highly expressed in the colon mucosa and its activation has been reported to protect against colitis. We studied the involvement of PPARgamma and its heterodimeric partner, the retinoid X receptor (RXR) in intestinal inflammatory responses. PPARgamma(1/)- and RXRalpha(1/)- mice both displayed a significantly enhanced susceptibi...
متن کاملInhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3.
Insulin-like growth factor-binding protein-3 (IGFBP-3) interacts with the type II nuclear receptors retinoid X receptor (RXR)alpha and retinoic acid receptor-alpha and modulates their transcriptional activity. Peroxisome proliferator-activated receptor (PPAR)gamma, a related nuclear receptor that dimerizes with RXRalpha, plays an important role in adipocyte differentiation. IGFBP-3 is regulated...
متن کاملDecreased nuclear hormone receptor expression in the livers of mice in late pregnancy.
During the third trimester of pregnancy, there is an increase in serum triglyceride and cholesterol levels. The mechanisms accounting for these changes in lipid metabolism during pregnancy are unknown. We hypothesized that, during pregnancy, the expression of nuclear hormone receptors involved in regulating lipid metabolism would decrease. In 19-day pregnant mice, serum triglyceride and non-HDL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 120 5 شماره
صفحات -
تاریخ انتشار 2010